Monotherapy or combination therapy with immune checkpoint inhibitors: comparing additive effects and differential mechanisms in antitumor response
DOI:
https://doi.org/10.5281/zenodo.13729930Keywords:
Checkpoint Inhibitors, Anti-PD-1, Anti-CTLA-4, Combined Therapy, SynergismAbstract
Cancer is a public health issue in Brazil and worldwide, with estimates of 18 million new cases emerging globally in 2018 and over 600,000 new cases in Brazil in 2020. The mortality related to the disease is alarming, with 9.6 million cancer-related deaths in 2018. Immune system cells, particularly CD8 T lymphocytes, play a crucial role in defending against tumors. However, mechanisms of immune evasion, such as decreased expression of class I MHC on tumor cells and the action of immune checkpoints like CTLA-4 and PD-1, hinder the effectiveness of the immune response. CTLA-4 inhibits lymphocyte activation, while PD-1, upon interacting with its ligands, limits the function of lymphocytes, favoring tumor survival. Checkpoint blockade immunotherapy, with drugs such as Ipilimumab (anti-CTLA-4) and Nivolumab (anti-PD-1), has shown promising results, increasing survival and response in cancer patients. The combination of these therapies shows better outcomes than monotherapy, demonstrating greater efficacy and activation of effector T cells. However, there are concerns about adverse effects and the understanding of the underlying molecular mechanisms. Combined therapy induces a distinct gene expression profile and immune response, suggesting synergistic actions. Despite encouraging results, the need for further research to fully comprehend this synergy and optimize therapy remains evident, aiming to improve clinical application and treatment standards for cancer.
References
GAROFOLO, Adriana et al . Dieta e câncer: um enfoque epidemiológico. Rev. Nutr., Campinas , v. 17, n. 4, p. 491-505, Dez. 2004 . Disponível em: <http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1415-52732004000400009&lng=en&nrm=iso>. Acesso em 22 Ago. 2020. http://dx.doi.org/10.1590/S1415-52732004000400009.
BRAY, Freddie et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for cancers in 185 countries. CA Cancer J Clin, [S. l.], p. 394-424, Nov. 2018. DOI 10.3322/caac.21492. Disponível em: https://pubmed.ncbi.nlm.nih.gov/30207593/. Acesso em: 16 ago. 2020.
BITTENCOURT, Rosane et al. Perfil epidemiológico do câncer na rede pública em Porto Alegre - RS. Revista Brasileira de Cancerologia, [S. l.], v. 50, n. 2, p. 95-101,2004.
MS / INCA / Estimativa de Câncer no Brasil, 2020
Stewart BW, Wild CP, editors. World cancer report 2014. Lyon: International Agency for Research on Cancer; 2014.
ZAMARIN, Dmitriy; BURGER, Robert A.; SILL, Michael W.; POWELL, Daniel J.; LANKES, Heather A.; FELDMAN, Michael D.; ZIVANOVIC, Oliver; GUNDERSON, Camille; KO, Emily; MATHEWS, Cara. Randomized Phase II Trial of Nivolumab Versus Nivolumab and Ipilimumab for Recurrent or Persistent Ovarian Cancer: an nrg oncology study. Journal Of Clinical Oncology, [S.L.], v. 38, n. 16, p. 1814-1823, 1 jun. 2020. American Society of Clinical Oncology (ASCO). http://dx.doi.org/10.1200/jco.19.02059.
KOOSHKAKI, Omid; DERAKHSHANI, Afshin; HOSSEINKHANI, Negar; TORABI, Mitra; SAFAEI, Sahar; BRUNETTI, Oronzo; RACANELLI, Vito; SILVESTRIS, Nicola; BARADARAN, Behzad. Combination of Ipilimumab and Nivolumab in Cancers: from clinical practice to ongoing clinical trials. International Journal Of Molecular Sciences, [S.L.], v. 21, n. 12, p. 4427, 22 jun. 2020. MDPI AG. http://dx.doi.org/10.3390/ijms21124427.
MARIN-ACEVEDO, Julian A.; DHOLARIA, Bhagirathbhai; SOYANO, Aixa E.; KNUTSON, Keith L.; CHUMSRI, Saranya; LOU, Yanyan. Next generation of immune checkpoint therapy in cancer: new developments and challenges. Journal Of Hematology & Oncology, [S.L.], v. 11, n. 1, 15 mar. 2018. Springer Science and Business Media LLC. http://dx.doi.org/10.1186/s13045-018-0582-8.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5856308/
PARDOLL, Drew M.. The blockade of immune checkpoints in cancer immunotherapy. Nature Reviews Cancer, [S.L.], v. 12, n. 4, p. 252-264, 22 mar. 2012. Springer Science and Business Media LLC. http://dx.doi.org/10.1038/nrc3239.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4856023/
ROWSHANRAVAN, Behzad; HALLIDAY, Neil; SANSOM, David M.. CTLA-4: a moving target in immunotherapy. Blood, [S.L.], v. 131, n. 1, p. 58-67, 4 jan. 2018. American Society of Hematology. http://dx.doi.org/10.1182/blood-2017-06-741033.
(Busca Geral: “CTLA-4”)
KRUGER, Stephan; ILMER, Matthias; KOBOLD, Sebastian; CADILHA, Bruno L.; ENDRES, Stefan; ORMANNS, Steffen; SCHUEBBE, Gesa; RENZ, Bernhard W.; D’HAESE, Jan G.; SCHLOESSER, Hans. Advances in cancer immunotherapy 2019 – latest trends. Journal Of Experimental & Clinical Cancer Research, [S.L.], v. 38, n. 1, p. 1-11, 19 jun. 2019. Springer Science and Business Media LLC. http://dx.doi.org/10.1186/s13046-019-1266-0.
ALTMANN, Daniel M.. A Nobel Prize‐worthy pursuit: cancer immunology and harnessing immunity to tumour neoantigens. Immunology, [S.L.], v. 155, n. 3, p. 283-284, 15 out. 2018. Wiley. http://dx.doi.org/10.1111/imm.13008.
BOUTROS, Celine; TARHINI, Ahmad; ROUTIER, Emilie; LAMBOTTE, Olivier; LADURIE, Francois Leroy; CARBONNEL, Franck; IZZEDDINE, Hassane; MARABELLE, Aurelien; CHAMPIAT, Stephane; BERDELOU, Armandine. Safety profiles of anti-CTLA-4 and anti-PD-1 antibodies alone and in combination. Nature Reviews Clinical Oncology, [S.L.], v. 13, n. 8, p. 473-486, 4 maio 2016. Springer Science and Business Media LLC. http://dx.doi.org/10.1038/nrclinonc.2016.58.
APETOH, Lionel; GHIRINGHELLI, François; TESNIERE, Antoine; OBEID, Michel; ORTIZ, Carla; CRIOLLO, Alfredo; MIGNOT, Grégoire; MAIURI, M Chiara; ULLRICH, Evelyn; SAULNIER, Patrick. Toll-like receptor 4–dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nature Medicine, [S.L.], v. 13, n. 9, p. 1050-1059, 19 ago. 2007. Springer Science and Business Media LLC. http://dx.doi.org/10.1038/nm1622.
FARKONA, Sofia; DIAMANDIS, Eleftherios P.; BLASUTIG, Ivan M.. Cancer immunotherapy: the beginning of the end of cancer?. Bmc Medicine, [S.L.], v. 14, n. 1, p. 1-18, 5 maio 2016. Springer Science and Business Media LLC. http://dx.doi.org/10.1186/s12916-016-0623-5.
KIMIZ-GEBOLOGLU, Ilgin; GULCE-IZ, Sultan; BIRAY-AVCI, Cigir. Monoclonal antibodies in cancer immunotherapy. Molecular Biology Reports, [S.L.], v. 45, n. 6, p. 2935-2940, 11 out. 2018. Springer Science and Business Media LLC. http://dx.doi.org/10.1007/s11033-018-4427-x.
MARIN-ACEVEDO, Julian A.; SOYANO, Aixa E.; DHOLARIA, Bhagirathbhai; KNUTSON, Keith L.; LOU, Yanyan. Cancer immunotherapy beyond immune checkpoint inhibitors. Journal Of Hematology & Oncology, [S.L.], v. 11, n. 1, p. 1-25, 12 jan. 2018. Springer Science and Business Media LLC. http://dx.doi.org/10.1186/s13045-017-0552-6.
YANG, Yiping. Cancer immunotherapy: harnessing the immune system to battle cancer. Journal Of Clinical Investigation, [S.L.], v. 125, n. 9, p. 3335-3337, 1 set. 2015. American Society for Clinical Investigation. http://dx.doi.org/10.1172/jci83871.
HAANEN, John B.A.G.; ROBERT, Caroline. Immune Checkpoint Inhibitors. Progress In Tumor Research, [S.L.], p. 55-66, 2015. S. Karger AG. http://dx.doi.org/10.1159/000437178.
SHARMA, Padmanee; SIEFKER-RADTKE, Arlene; BRAUD, Filippo de; BASSO, Umberto; CALVO, Emiliano; BONO, Petri; MORSE, Michael A.; ASCIERTO, Paolo A.; LOPEZ-MARTIN, Jose; BROSSART, Peter. Nivolumab Alone and With Ipilimumab in Previously Treated Metastatic Urothelial Carcinoma: checkmate 032 nivolumab 1 mg/kg plus ipilimumab 3 mg/kg expansion cohort results. Journal Of Clinical Oncology, [S.L.], v. 37, n. 19, p. 1608-1616, 1 jul. 2019. American Society of Clinical Oncology (ASCO). http://dx.doi.org/10.1200/jco.19.00538.
MELLMAN, Ira; COUKOS, George; DRANOFF, Glenn. Cancer immunotherapy comes of age. Nature, [S.L.], v. 480, n. 7378, p. 480-489, dez. 2011. Springer Science and Business Media LLC. http://dx.doi.org/10.1038/nature10673.
GAO, Xin; MCDERMOTT, David F.. Ipilimumab in combination with nivolumab for the treatment of renal cell carcinoma. Expert Opinion On Biological Therapy, [S.L.], v. 18, n. 9, p. 947-957, 30 ago. 2018. Informa UK Limited. http://dx.doi.org/10.1080/14712598.2018.1513485.
HELLMANN, Matthew D.; CIULEANU, Tudor-Eliade; PLUZANSKI, Adam; LEE, Jong Seok; OTTERSON, Gregory A.; AUDIGIER-VALETTE, Clarisse; MINENZA, Elisa; LINARDOU, Helena; BURGERS, Sjaak; SALMAN, Pamela. Nivolumab plus Ipilimumab in Lung Cancer with a High Tumor Mutational Burden. New England Journal Of Medicine, [S.L.], v. 378, n. 22, p. 2093-2104, 31 maio 2018. Massachusetts Medical Society. http://dx.doi.org/10.1056/nejmoa1801946.
MOTZER, Robert J.; TANNIR, Nizar M.; MCDERMOTT, David F.; FRONTERA, Osvaldo Arén; MELICHAR, Bohuslav; CHOUEIRI, Toni K.; PLIMACK, Elizabeth R.; BARTHÉLÉMY, Philippe; PORTA, Camillo; GEORGE, Saby. Nivolumab plus Ipilimumab versus Sunitinib in Advanced Renal-Cell Carcinoma. New England Journal Of Medicine, [S.L.], v. 378, n. 14, p. 1277-1290, 5 abr. 2018. Massachusetts Medical Society. http://dx.doi.org/10.1056/nejmoa1712126.
MOTZER, Robert J; RINI, Brian I; MCDERMOTT, David F; FRONTERA, Osvaldo Arén; HAMMERS, Hans J; A CARDUCCI, Michael; SALMAN, Pamela; ESCUDIER, Bernard; BEUSELINCK, Benoit; AMIN, Asim. Nivolumab plus ipilimumab versus sunitinib in first-line treatment for advanced renal cell carcinoma: extended follow-up of efficacy and safety results from a randomised, controlled, phase 3 trial. The Lancet Oncology, [S.L.], v. 20, n. 10, p. 1370-1385, out. 2019. Elsevier BV. http://dx.doi.org/10.1016/s1470-2045(19)30413-9.
HELLMANN, Matthew D.; CALLAHAN, Margaret K.; AWAD, Mark M.; CALVO, Emiliano; ASCIERTO, Paolo A.; ATMACA, Akin; RIZVI, Naiyer A.; HIRSCH, Fred R.; SELVAGGI, Giovanni; SZUSTAKOWSKI, Joseph D.. Tumor Mutational Burden and Efficacy of Nivolumab Monotherapy and in Combination with Ipilimumab in Small-Cell Lung Cancer. Cancer Cell, [S.L.], v. 33, n. 5, p. 853-861.e4, maio 2018. Elsevier BV. http://dx.doi.org/10.1016/j.ccell.2018.04.001.
HAMMERS, Hans J.; PLIMACK, Elizabeth R.; INFANTE, Jeffrey R.; RINI, Brian I.; MCDERMOTT, David F.; LEWIS, Lionel D.; VOSS, Martin H.; SHARMA, Padmanee; PAL, Sumanta K.; RAZAK, Albiruni R. Abdul. Safety and Efficacy of Nivolumab in Combination With Ipilimumab in Metastatic Renal Cell Carcinoma: the checkmate 016 study. Journal Of Clinical Oncology, [S.L.], v. 35, n. 34, p. 3851-3858, 1 dez. 2017. American Society of Clinical Oncology (ASCO). http://dx.doi.org/10.1200/jco.2016.72.1985.
HELLMANN, Matthew D.; PAZ-ARES, Luis; CARO, Reyes Bernabe; ZURAWSKI, Bogdan; KIM, Sang-We; COSTA, Enric Carcereny; PARK, Keunchil; ALEXANDRU, Aurelia; LUPINACCI, Lorena; JIMENEZ, Emmanuel de La Mora. Nivolumab plus Ipilimumab in Advanced Non–Small-Cell Lung Cancer. New England Journal Of Medicine, [S.L.], v. 381, n. 21, p. 2020-2031, 21 nov. 2019. Massachusetts Medical Society. http://dx.doi.org/10.1056/nejmoa1910231.
DANIEL VARGAS P. DE ALMEIDA (Brasil). Manual de Oncologia Clínica do Brasil. Novo regime de administração de imunoterapia recebe aprovação do FDA. 2018. Disponível em: https://mocbrasil.com/blog/uncategorized/novo-regime-de-administracao-de-imunoterapia-recebe-aprovacao-do-fda/#:~:text=No%20Brasil%2C%20o%20nivolumabe%20%C3%A9,bexiga%2C%20que%20recebeu%20aprova%C3%A7%C3%A3o%20recentemente. Acesso em: 18 ago. 2020.
Food and Drug Administration. Hematology/Oncology (Cancer) Approvals & Safety Notifications. 2020. Disponível em: https://www.fda.gov/drugs/resources-information-approved-drugs/hematologyoncology-cancer-approvals-safety-notifications. Acesso em: 18 ago. 2020.
LECLERC, Marine; VOILIN, Elodie; GROS, Gwendoline; CORGNAC, Stéphanie; MONTPRÉVILLE, Vincent de; VALIDIRE, Pierre; BISMUTH, Georges; MAMI-CHOUAIB, Fathia. Regulation of antitumour CD8 T-cell immunity and checkpoint blockade immunotherapy by Neuropilin-1. Nature Communications, [S.L.], v. 10, n. 1, p. 1-14, 26 jul. 2019. Springer Science and Business Media LLC. http://dx.doi.org/10.1038/s41467-019-11280-z.
LARKIN, James; CHIARION-SILENI, Vanna; GONZALEZ, Rene; GROB, Jean-Jacques; RUTKOWSKI, Piotr; LAO, Christopher D.; COWEY, C. Lance; SCHADENDORF, Dirk; WAGSTAFF, John; DUMMER, Reinhard. Five-Year Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. New England Journal Of Medicine, [S.L.], v. 381, n. 16, p. 1535-1546, 17 out. 2019. Massachusetts Medical Society. http://dx.doi.org/10.1056/nejmoa1910836.
YANG, Yi; JIN, Gang; PANG, Yao; HUANG, Yijie; WANG, Wenhao; ZHANG, Hongyi; TUO, Guangxin; WU, Peng; WANG, Zequan; ZHU, Zijiang. Comparative Efficacy and Safety of Nivolumab and Nivolumab Plus Ipilimumab in Advanced Cancer: a systematic review and meta-analysis. Frontiers In Pharmacology, [S.L.], v. 11, p. 1-10, 14 fev. 2020. Frontiers Media SA. http://dx.doi.org/10.3389/fphar.2020.00040.
HANAHAN, Douglas; WEINBERG, Robert A.. Hallmarks of Cancer: the next generation. Cell, [S.L.], v. 144, n. 5, p. 646-674, mar. 2011. Elsevier BV. http://dx.doi.org/10.1016/j.cell.2011.02.013.
GUERRA, Maximiliano Ribeiro et al. Risco de Câncer no Brasil: tendências e estudos epidemiológicos mais recentes. Revista Brasileira de Cancerologia, [S. l.], v. 51, n. 3, p. 227-234, 2005.
CRISPEN, Paul L.; KUSMARTSEV, Sergei. Mechanisms of immune evasion in bladder cancer. Cancer Immunology, Immunotherapy, [S.L.], v. 69, n. 1, p. 3-14, 6 dez. 2019. Springer Science and Business Media LLC. http://dx.doi.org/10.1007/s00262-019-02443-4.
BUCHBINDER, Elizabeth I.; DESAI, Anupam. CTLA-4 and PD-1 Pathways: similarities, differences, and implications of their inhibition. American Journal Of Clinical Oncology, [S.L.], v. 39, n. 1, p. 98-106, fev. 2016. Ovid Technologies (Wolters Kluwer Health). http://dx.doi.org/10.1097/coc.0000000000000239.
SCHUMACHER, Ton N.; SCHREIBER, Robert D.. Neoantigens in cancer immunotherapy. Science, [S.L.], v. 348, n. 6230, p. 69-74, 2 abr. 2015. American Association for the Advancement of Science (AAAS). http://dx.doi.org/10.1126/science.aaa4971.
BURR, Marian L.; SPARBIER, Christina E.; CHAN, Kah Lok; CHAN, Yih-Chih; KERSBERGEN, Ariena; LAM, Enid Y.N.; AZIDIS-YATES, Elizabeth; VASSILIADIS, Dane; BELL, Charles C.; GILAN, Omer. An Evolutionarily Conserved Function of Polycomb Silences the MHC Class I Antigen Presentation Pathway and Enables Immune Evasion in Cancer. Cancer Cell, [S.L.], v. 36, n. 4, p. 385-401, out. 2019. Elsevier BV. http://dx.doi.org/10.1016/j.ccell.2019.08.008.
JAIN, Prantesh; JAIN, Chhavi; VELCHETI, Vamsidhar. Role of immune-checkpoint inhibitors in lung cancer. Therapeutic Advances In Respiratory Disease, [S.L.], v. 12, p. 1-13, jan. 2018. SAGE Publications. http://dx.doi.org/10.1177/1753465817750075.
WEI, Spencer C.; ANANG, Nana-Ama A. S.; SHARMA, Roshan; ANDREWS, Miles C.; REUBEN, Alexandre; LEVINE, Jacob H.; COGDILL, Alexandria P.; MANCUSO, James J.; WARGO, Jennifer A.; PE’ER, Dana. Combination anti–CTLA-4 plus anti–PD-1 checkpoint blockade utilizes cellular mechanisms partially distinct from monotherapies. Proceedings Of The National Academy Of Sciences, [S.L.], v. 116, n. 45, p. 22699-22709, 21 out. 2019. Proceedings of the National Academy of Sciences. http://dx.doi.org/10.1073/pnas.1821218116.
WEI, Spencer C.; DUFFY, Colm R.; ALLISON, James P.. Fundamental Mechanisms of Immune Checkpoint Blockade Therapy. Cancer Discovery, [S.L.], v. 8, n. 9, p. 1069-1086, 16 ago. 2018. American Association for Cancer Research (AACR). http://dx.doi.org/10.1158/2159-8290.cd-18-0367.
GIBNEY, Geoffrey T; WEINER, Louis M; ATKINS, Michael B. Predictive biomarkers for checkpoint inhibitor-based immunotherapy. The Lancet Oncology, [S.L.], v. 17, n. 12, p. 542-551, dez. 2016. Elsevier BV.http://dx.doi.org/10.1016/s1470-2045(16)30406-5
WEI, Spencer C.; LEVINE, Jacob H.; COGDILL, Alexandria P.; ZHAO, Yang; ANANG, Nana-Ama A.s.; ANDREWS, Miles C.; SHARMA, Padmanee; WANG, Jing; WARGO, Jennifer A.; PE’ER, Dana. Distinct Cellular Mechanisms Underlie Anti-CTLA-4 and Anti-PD-1 Checkpoint Blockade. Cell, [S.L.], v. 170, n. 6, p. 1120-1133, set. 2017. Elsevier BV. http://dx.doi.org/10.1016/j.cell.2017.07.024.
GIDE, Tuba N.; QUEK, Camelia; MENZIES, Alexander M.; TASKER, Annie T.; SHANG, Ping; HOLST, Jeff; MADORE, Jason; LIM, Su Yin; VELICKOVIC, Rebecca; WONGCHENKO, Matthew. Distinct Immune Cell Populations Define Response to Anti-PD-1 Monotherapy and Anti-PD-1/Anti-CTLA-4 Combined Therapy. Cancer Cell, [S.L.], v. 35, n. 2, p. 238-255, fev. 2019. Elsevier BV. http://dx.doi.org/10.1016/j.ccell.2019.01.003.
BYUN, David J.; WOLCHOK, Jedd D.; ROSENBERG, Lynne M.; GIROTRA, Monica. Cancer immunotherapy — immune checkpoint blockade and associated endocrinopathies. Nature Reviews Endocrinology, [S.L.], v. 13, n. 4, p. 195-207, 20 jan. 2017. Springer Science and Business Media LLC. http://dx.doi.org/10.1038/nrendo.2016.205.
DAS, Rituparna; VERMA, Rakesh; SZNOL, Mario; BODDUPALLI, Chandra Sekhar; GETTINGER, Scott N.; KLUGER, Harriet; CALLAHAN, Margaret; WOLCHOK, Jedd D.; HALABAN, Ruth; DHODAPKAR, Madhav V.. Combination Therapy with Anti–CTLA-4 and Anti–PD-1 Leads to Distinct Immunologic Changes In Vivo. The Journal Of Immunology, [S.L.], v. 194, n. 3, p. 950-959, 24 dez. 2014. The American Association of Immunologists. http://dx.doi.org/10.4049/jimmunol.1401686.
CURRAN, M. A.; MONTALVO, W.; YAGITA, H.; ALLISON, J. P.. PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proceedings Of The National Academy Of Sciences, [S.L.], v. 107, n. 9, p. 4275-4280, 16 fev. 2010. Proceedings of the National Academy of Sciences. http://dx.doi.org/10.1073/pnas.0915174107.
ROTTE, Anand. Combination of CTLA-4 and PD-1 blockers for treatment of cancer. Journal Of Experimental & Clinical Cancer Research, [S.L.], v. 38, n. 1, p. 1-12, 13 jun. 2019. Springer Science and Business Media LLC. http://dx.doi.org/10.1186/s13046-019-1259-z.
MELO, Karina Mescouto; CARVALHO, Beatriz Tavares Costa. Células T regulatórias: mecanismos de ação e função nas doenças humanas. Rev bras alerg imunopatol, v. 32, n. 5, p. 184-8, 2009.
SCHNEIDER, Helga; RUDD, Christopher E.. Tyrosine Phosphatase SHP-2 Binding to CTLA-4: absence of direct yvkm/yfip motif recognition. Biochemical And Biophysical Research Communications, [S.L.], v. 269, n. 1, p. 279-283, mar. 2000. Elsevier BV. http://dx.doi.org/10.1006/bbrc.2000.2234.
MOCELLIN, Simone; NITTI, Donato. CTLA-4 blockade and the renaissance of cancer immunotherapy. Biochimica Et Biophysica Acta (Bba) - Reviews On Cancer, [S.L.], v. 1836, n. 2, p. 187-196, dez. 2013. Elsevier BV. http://dx.doi.org/10.1016/j.bbcan.2013.05.003.
FATHMAN, C. Garrison; LINEBERRY, Neil B.. Molecular mechanisms of CD4+ T-cell anergy. Nature Reviews Immunology, [S.L.], v. 7, n. 8, p. 599-609, 6 jul. 2007. Springer Science and Business Media LLC. http://dx.doi.org/10.1038/nri2131.
SALMANINEJAD, Arash; VALILOU, Saeed Farajzadeh; SHABGAH, Arezoo Gowhari; ASLANI, Saeed; ALIMARDANI, Malihe; PASDAR, Alireza; SAHEBKAR, Amirhossein. PD‐1/PD‐L1 pathway: basic biology and role in cancer immunotherapy. Journal Of Cellular Physiology, [S.L.], v. 234, n. 10, p. 16824-16837, 19 fev. 2019. Wiley. http://dx.doi.org/10.1002/jcp.28358.
SHARPE, Arlene H.; PAUKEN, Kristen E.. The diverse functions of the PD1 inhibitory pathway. Nature Reviews Immunology, [S.L.], v. 18, n. 3, p. 153-167, 13 nov. 2017. Springer Science and Business Media LLC. http://dx.doi.org/10.1038/nri.2017.108.
ABRIL-RODRIGUEZ, Gabriel; RIBAS, Antoni. SnapShot: immune checkpoint inhibitors. Cancer Cell, [S.L.], v. 31, n. 6, p. 848-848.e1, jun. 2017. Elsevier BV. http://dx.doi.org/10.1016/j.ccell.2017.05.010.
LARKIN, James; CHIARION-SILENI, Vanna; GONZALEZ, Rene; GROB, Jean Jacques; COWEY, C. Lance; LAO, Christopher D.; SCHADENDORF, Dirk; DUMMER, Reinhard; SMYLIE, Michael; RUTKOWSKI, Piotr. Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma. New England Journal Of Medicine, [S.L.], v. 373, n. 1, p. 23-34, 2 jul. 2015. Massachusetts Medical Society. http://dx.doi.org/10.1056/nejmoa1504030.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Journal of Social Issues and Health Sciences (JSIHS)
This work is licensed under a Creative Commons Attribution 4.0 International License.